SMALL PERTURBATIONS OF UNSTEADY ONE-DIMENSIONAL
AXISYMMETRIC MOTIONS OF AN IDEAL
INCOMPRESSIBLE LIQUID
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The investigation of the stability of unsteady motions is combined with the study of the asymptotic repre-
sentation of the solutions of the equations of small perturbations which satisfy given initial and boundary con-
ditions. In most cases it is practically impossible to determine the asymptotic development of small per-
turbations because of the complexity of the equations describing the evolution of small perturbations. The
solution of the problem under discussion is considerably simplified if the equations of small perturbations can
be reduced to a system of ordinary differential equations. A number of examples of unsteady motions of an
ideal incompressible liquid are known for which the asymptotic development of small perturbations has been
investigated [1-5]. In most of the references cited the equations of small perturbations were reduced to a
system of ordinary differential equations by assuming that the perturbed motion is irrotational. On the other
hand, it is known [1, 4] that taking account of rotational perturbations can have a pronounced effect on conclu-
sions about the stability of the motion under study. The present paper treats plane unsteady motions of an ideal
incompressible liquid. It is shown that for a broad class of axisymmetric one-dimensional motions the equa-
tions of small perturbations can be reduced to a system of ordinary differential equations. No additional
restrictions, such as the requirement that the perturbed motion be irrotational, are imposed. As an application
of this result we have investigated the evolution of small perturbations of the motion of a rotating ring of an
ideal incompressible liquid toward the center under the action of an external pressure.

1. Fundamental Motion. Axisymmetric one-dimensional motions of an ideal incompressible liquid are
- determined by the solutions of the following system of equations:
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where p is the pressure, py is the density, and vy and Vg are the velocity components along the axes of the
polar coordinate system, r, ¢

For definiteness we assume that Eqs. (1.1) describe the motion of a liquid in the ring R,(t) =r =<R,(t) with
free surfaces r =Rj(t) (i=1, 2). Since generally there are free surfaces in perturbed motions also, it is expedi-
ent to use the Lagrangian form of the hydrodynamics equations. We define the independent Lagrangian vari-
ables p and ¢ as the values of the polar coordinates r and ¢ of particles at time t=0.

If we introduce dimensionless dependent and independent variables by the expressions

RZ
p=Ry,(E+1), t=Tt, r=Rys, p= PoT;o p, (1.2)

where Ry, is the initial inner radius of the ring and T is the characteristic time, the equations of plane parallel
motions of an ideal incompressible liquid in these variables can be written in the form
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In these equations the required functions s, ¢, and p depend on the variables ¢, 6, and 1. For simplicity the
dimensionless and dimensional pressures in Egs. (1.3) are denoted by the same symbol. The definition of the
Lagrangian variables and Eqs. (1.2) yield the following initial conditions for the functions s =s(¢, 6, 7) and
Q= ‘P(E’ 0y 7):
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s=E+4+1, ¢=0 a5 v=0. {1.4)

Plane axisymmetric motions correspond to the solutions of Egs. (1.3) in which

s=0(E, 1), 9 =0 + (& 1), p = po(§, 7). (1.5)
The integration of Eqs. (1.3) under the assumptions (1.5) leads to the following expressions:
co = [(E + 1) — @), dy/or = (& + 1)20(E) x [(§ + 1)* — ®(@)], (1.6)
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In Egs. (1.6) the function w(t) gives the initial distribution of the angular velocity, and &(1) determines the law
of motion of the ring.

By satisfying the boundary conditions at the free surfaces of the ring £=0 and £=1=(Ry — Ryg)/Ryy an
ordinary second order differential equation is obtained for &(1). The initial conditions for this function are
determined by conditions (1.4) and the specification of the radial component of velocity at the time =0,

2. Equations of Small Perturbations. The behavior of small perturbations for motions of an ideal
incompressible liquid described by Eqgs. (1.6) will be investigated within the framework of the linear theory.
Suppose the perturbed motion is described by the expressions

s =0 g, 2 R E T) ezne (2.1)
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where the amplitudes of the perturbations R,,, A, and Il and all their derivatives are assumed sufficiently
small,

Substituting Egs. (2.1) into (1.3) and discarding terms of higher order of smallness in comparison with
the amplitudes of the perturbations leads to the following system of equations:
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It follows from the form of Eqs. (2.2) that for n = 0 they can be reduced to a single foxirth order equation for
Rp(g, 7). After determining this function the amplitudes Ay and I, can be found from the second and third of
Eqgs. (2.2).

The fourth order equation obtained is generally of rather unwieldy form. Since the coefficients in this
equation depend on both ¢ and 7, it is practically impossible to find the asymptotic solution of the correspond-
ing initial-boundary value problem without further simplifications. Investigation of the properties of this fourth
order equation enabled us to establish the following fact: If the initial angular velocity w(¢) has the form

o(f) = o, + o/(§ + 1)?,

the equation for Ry can be written in the compact form
D1D2DsDa(cR,) = 0. (2.4)
In (2.3) the quantities wj; and w, are arbitrary constants. The initial distribution (2.3) corresponds to the

superposition of the potential vorticity and rotation of the liquid as a solid. In Eq. (2.4) the Di (i=1, ..., 4)
denote the following differential operators:

(2.3}
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Equation (2.4) is easily integrated and yields the expression
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0 b
where A,(¢), up(1), and vi(7) are arbitrary functions to be determined from the initial and boundary conditions

for the perturbed motion. By specifying the initial perturbation
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OR,/0v =V () at 1 =0
of the radial component of veloeity the function Ap(f) is determined at once:
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It can be established that the boundary conditions at free surfaces in perturbed motion are reduced to a system
of two ordinary second order differential equations for uu(r) and vp(1).

Thus, it has been established that for solutions of the hydrodynamics equations given by (1.6) and (2.3)
the analysis of small perturbations in the class of plane motions is reduced to an investigation of the Cauchy
problem for ordinary differential equations. '

3. Motion toward the Center of a Rotating Ring. We apply the result obtained to the investigation of
small perturbations of the motion of a rotating ring toward the center under the action of a variable external
pressure. The problem of the motion of a rotating ring toward the center is considered in the following
arrangement.

Suppose at times t=0 a ring R;p=r =< Ry of an ideal incompressible liquid rotating as a rigid body with
an angular velocity Qg is in equilibrium under the action of a pressure drop and capillary forces with surface
tensions B§ and B! respectively on the inner and outer surfaces of the ring. Different surface tensions on the
inner and outer surfaces occur when the media inside and outside the ring have different physical properties.
For t>0 a pressure p=P(t) acts on the outer surface of the ring, and the inner surfaces of the ring is free, It
is required to determine the resulting motion of the ring.

The solution of the problem posed is given in dimensionless variables by Eqs. (1.6), where w(§) =
00T =wy is the constant initial angular velocity and &(1) is the solution of the Cauchy problem.
1a0), 4 1, _, _ 1 (dD\2 1 — _ d
(oh0-+ 45— 2 et — g 080+ (R =P @) —Fob+ 2+ 4 psi, 00 =320 e
where f;= Tz(poR:}o)"lﬁs and Bl = Tz(poRiu)'iﬁﬁ are the dimensionless surface tensions; ¢,(1) = [1 — ®(1)]2 and
0y(t) = [(I + 1) — ®(x)[¥* are functions giving the laws of motion of the inner and outer surfaces of the ring,
respectively.

A simple analysis of problem (3.1) shows that two qualitatively different kinds of motion of the ring are

possible depending on the sign of the quantity
1 2 B
%= P (0) — 5 @} (I* + 20) + Bo + 1= -

For >0 the ring begins to be compressed, and for » <0 to expand. Further, if wy= 0 and for all t>0 the func-
tion P(f) satisfies the inequalities 0 < Py< P(t) < P; <« the inner radius of the ring R,(t) will vary over finite
limits 0<R, =< R((t) = R,, <« and the possible regimes when the critical values are R, or R, will be reached
after an infinite time. If the pressure at the outer surface of the rotating ring is constant (p=P;>0) the ring
will pulsate with an amplitude and period which are constant in time,

Henceforth we restrict ourselves to the case of the convergence of a ring toward the center under the
assumption that R«/R;y«<1. The latter condition can always be satisfied, since for wy=0 the critical radius
Rx=0.

We assume that this motion is perturbed either by an initial distortion of the shape of the boundaries of
the ring from circular form or by the asymmetry of the impulse. Suppose that in the perturbed motion the
inner surface of the ring is given by the equation

400 in5
.
E=v(@) = 5 veo'™,
n=—0o0

and the outer surface of the ring by the equation
. g
E=l+p@) =1+ X pe™
n=—=0

The amplitudes v, and py of the initial perturbations of the boundaries of the ring are assumed sufficiently
small. We assume also that perturbations are introduced into the distribution of initial velocities, i.e.

AR, I9T = V,(E) at 1=0,
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and into the law of action of the pressure at the outer surface of the ring

p=P)+ X m(1)e" a E=14p().
Nz=—00
The radial deviations of the free surfaces in the perturbed motion from the free surfaces in the initial
motion very clearly characterize the effect of small perturbations on the motion of the ring. We denote by
Hy(e, 7) and Hy(6, ) the values of the deviations for the inner and outer surfaces of the ring respectively. In
the linear approximation these -quantities are given by the equations

Hy(0,7) =0 (v (8), 1)+ R(v(8),0,7) — 0y (1) =07 (1) 3 [va +04 (1) R, (0,0)]¢™ = 3 H,, (1),

N=—
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. n=-—c =2 00

The equations which must be satisfied by the functions Hyn(7) and Hyn(7) of Egs. (3.2) follow from the
boundary conditions at the free surfaces of the ring in perturbed motion and from the obvious relations of
these functions to the functions up(7) and va(7) given by Eq. (2.5). This system of equations is too cumbersome
to present here, but we note that in general it consists of two inhomogeneous second order ordinary differential
equations, The coefficients in this system of equations are regular everywhere except at the point =17, deter-
mined by the equation gy{7*) =0. At 7= 74« some of the coefficients have singularities of the form oo'k(*' In gg)™,
where k and A are positive rational numbers. We note that the equations of small irrotational perturbations of
the inertial motion of a ring have similar singularities [1]. The presence of a logarithmic singularity in the
equations of small perturbations complicates finding the asymptotic representation of the solution of the Cauchy
problem in the neighborhood of the singular point =1, since there is no general theory for constructing
asymptotic expansions when the singular points are not poles [6].

Since a detailed discussion of the asymptotic analysis of the solutions of the system of equations under
discussion in the neighborhood of the time of collapse of the ring 7=1* cannot be given in this paper, we present
the results of this analysis.

At all times v & [0, v, ] during the compression of the ring the amplitudes Hyn(7) of the perturbations of
the outer surface of the ring remain bounded. The surface tension exerts a stabilizing effect on the develop-
ment of perturbations; i.e., as n—« the amplitudes Hyp(7) and Hy (1) are bounded functions in the interval
[0, 7]. For all the types of perturbations enumerated above the behavior of the amplitudes Hgy(7) of the per-
turbations of the inner surface of a ring as 7— 7, differs in the following cases: a) wy=0; b) wy=0,0=1; ¢)
wp=0, n>1. It should be noted that for w= 0 the condition R,/R,y<«<1 justifies the use of the asymptotic analysis
to investigate the solutions of the equations of small perturbations in the neighborhood of the time of convergence
of the ring to the critical position characterized by the equation R, = Rx.

A study of the properties of the solutions of the equations of small perturbations for cases a)-c)
leads respectively to the following asymptotic representations of the function Hyp(7):

Hon = Ln (@ exp [0 7 g (— Ino) " (1 +o (1)), (3.5)
Hoy = M) + Mifo)(—ln oL + o(1));

Hyp = My (t)(—1In o) " exp (017 — T 1n 6,)(1 = o(1)).

In these expressions Ly (7), Ni(7), and Mp(7) are functions which are bounded in the interval [0, 74], and the
constant Q is

0

T 1/2
Q =2[j P(v) (D’(r)dr] .

It follows from (3.3) that rotation plays a double role in determining the behavior of small perturbations during
the collapse of a ring. On the one hand it decreases the growth of the amplitudes of the perturbations, and on
the other hand it increases their oscillation. The stabilizing effect of the rotation of a liquid on the develop-
ment of small perturbations was noted in [7] also, where the stability of stationary plane parallel potential
vorticity with respect to plane irrotational perturbations was studied.

In conclusion we note that the effects of rotational perturbations on the stability of contraction of a ring
of ideal incompressible liquids are indirect. A similar asymptotic analysis for the equations of irrotational
perturbations of the inertial motion of a ring presented in [1] shows that the asymptotic form of the radial



deflections of the inner surface of the ring will coincide with the asymptotic behavior of the functions Hy,(7) in
cages b) and ¢).  Consequently in the collapse of a ring of ideal incompressible liquid perturbations of
general form develop similarly to irrotational perturbations.
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APPLICATION OF EXACT SOLUTIONS OF THE "SHALLOW WATER"Y
EQUATIONS TO THE EXPLANATION OF THE SIMPLEST FLOWS

B. L. Rozhdestvenskii UDC 532,593

Stationary solutions of the differential equations of the theory of "shallow water" with axial symmetry
are given by the implications of these equations:

rhu = Q = Q4/2np = const; (1)
rv = D = const; 2)
L + 22 ~——— 4 gh =.C = const, (3)

where h=h(r) is the height of an incompressible fluid layer of density p, u=u(r), v=v(r) are, respectively, the
radial and circumferential components of the fluid velocity vector which is considered constant along the
vertical in the whole layer 0= z=<h(r) in the "shallow water" approximation, g is the acceleration of gravity,
and Qq is the fluid discharge through any section r =const = ry.

From (1)-(3) we have the relationship

@ _ R(C—gh

57 = T~ = 9 (h, € %), x=DJQ, )

which implicitly defines the dependence h=h(r) for known Q, C, D.

Graphs of the function ¢(h, C, n) are presented in Fig. 1 for n=0and n=1.

The method of the graphical determination of the dependence h=h(r) is evident from (4), and it is also
clear from Fig. 1 that a stationary axisymmetric solution of the "shallow water"™ equations exists only for
r > 1rQ, C, 0)> r (Q, C,0) = () 27/8)g0C-3"=.
Hence (4) yields two solutions corresponding to two different fluid flow regimes.
The first flow regime corresponds to the dependence h=h(r), determined from (4) for 0 <h <hy(C, 1),
and the second for h(C, %) <h <C/g. Here h,(C, %) denotes the value of h for which ¢(h, C, ) reaches the

maximum. It can be seen that for w =0
he(C, %) << B(C, 0) = 2C/3g.
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