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The investigation of the stability of unsteady motions is combined with the study of the asymptotic repre- 
sentation of the solutions of the equations of small perturbations which satisfy given initial and boundary con- 
ditions. In most cases it is practically impossible to determine the asymptotic development of small per- 
turbations because of the complexity of the equations describing the evolution of small perturbations. The 
solution of the problem under discussion is considerably simplified if the equations of small perturbations can 
be reduced to a system of ordinary differential equations. A number of examples of unsteady motions of an 
ideal incompressible liquid are known for which the asymptotic development of small perturbations has been 
investigated [1-5]. In most of the references cited the equations of small perturbations were reduced to a 
system of ordinary differential equations by assuming that the perturbed motion is irrotational. On the other 
hand, it is known [1, 4] that taking account of rotational perturbations can have a pronounced effect on conclu- 
sions about the stability of the motion under study. The present paper treats plane unsteady motions of an ideal 
incompressible liquid. It is shown that for a broad class of axisymmetric one-dimensional motions the equa- 
tions of small perturbations can be reduced to a system of ordinary differential equations. No additional 
restrictions, such as the requirement that the perturbed motion be irrotational, are imposed. As an application 
of this result we have investigated the evolution of small perturbations of the motion of a rotating ring of an 
ideal incompressible liquid toward the center under the action of an external pressure. 

1. Fundamental Motion. Axisymmetric one-dimensional motions of an ideal incompressible liquid are 

�9 determined by the solutions of the following system of equations: 
Ov v2 I a p  

a~r + Vr r r b Os ( i . i) 

ave~at § v,av~/Or + v,v~/r = O, avr/ar -{- v/r : O, 

where  p is the p r e s s u r e ,  P0 is the densi ty,  and v r  and v~o a r e  the veloci ty  components  along the axes  of the 
polar  coordinate  s y s t e m ,  r ,  ~p 

For  def ini teness  we a s s u m e  that  Eqs.  (1.1) desc r ibe  the motion of a liquid in the r ing  Rl(t) _< r -  R2(t) with 
f r ee  su r f aces  r =Ri(t) (i = 1, 2). Since genera l ly  there  a r e  f ree  su r f aces  in per tu rbed  motions also,  it is expedi-  
ent  to use  the Lagrang ian  f o r m  of the hydrodynamics  equations.  We define the independent Lagrangian  v a r i -  
ab les  p and 0 as the values  of  the po la r  coordinates  r and ~ of pa r t i c l e s  a t  t ime t = 0. 

If we introduce d imens ion less  dependent and independent va r i ab l e s  by the exp res s ions  

PoRto p=R10(~+i), t = T ~  r = B l o s  , p = - - T - z - p '  , (1.2) 

where  Rio is the init ial  inner rad ius  of the r ing  and T is the c h a r a c t e r i s t i c  t ime,  the equations of plane para l l e l  
mot ions  of  an ideal  i ncom pres s i b l e  liquid in these  va r i ab l e s  can be wri t ten  in the f o r m  

as ra's . ,a~p,,] . aq~a ( ~ )  ap (1.3) ) " 

as [ 02s aq> a / l a~p 'i , 

as a(p as a~p ~ - ~ i  

In these  equations the r equ i red  functions s ,  q~, and p depend on the va r i ab l e s  ~, O, and v. For  s impl ic i ty  the 
d imens ion less  and d imens iona l  p r e s s u r e s  in Eqs.  (1.3) a r e  denoted by the s ame  symbol .  The definition of the 
Lagrangian  v a r i a b l e s  and Eqs.  (1.2) yield the following init ial  conditions for the functions s = s(~, e, r) and 

= r O, T) : 
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s - - - - ~ §  q~----0 as ~ = 0 .  (1.4) 

Plane ax i symmet r i c  motions correspond to the solutions of Eqs. (1.3) in which 

s = ~(~, ~), ~ = 0 § ~,(L ~), p = p0(L ~). (1.5) 

The integration of Eqs. (1.3) under the assumptions (1.5) leads to the following express ions :  

(r = l(~ § t) 2 -- r 1/2, 0"~i0-~ = (~ + i)2r • [(~ § t) 2 -- (b(~)] -1, (1.6) 

OPo [ 1 2 d2~ ' t {d~\21  

In Eqs. (1.6) the function w(~) gives the initial distribution of the angular velocity,  and ~(~) determines the law 
of motion of the r ing.  

By satisfying the boundary conditions at  the free surfaces  of the r ing ~ =0 and ~ =l = (R20 - R10)/R10 an 
ord inary  second o rde r  differential equation is obtained for ~(~-). The initial conditions for this function a re  
determined by conditions (1.4) and the specification of the radial  component of velocity at the time ,r = 0. 

2. Equations of Small Per turbat ions .  The behavior of small  perturbat ions for motions of an ideal 
incompress ib le  liquid described by Eqs. (1.6) will be investigated within the f ramework of the linear theory. 
Suppose the per turbed motion is descr ibed by the express ions  

§162 
s = ~ (~, T) -]-- ~ R~ (~, "c) e ~'~~ (2.1) 

= 0 + ~ (~, ~) + ~ A~ (~, ~) ~ . 0  p = P0 (~, ~) + Z n~ (~, ~) ~n~, 
~ = - - o o  n : - - c o  

where the amplitudes of the perturbations R m An, and fin and all their derivatives a re  assumed sufficiently 
small .  

Substituting Eqs. (2.1) into (1.3) and discarding te rms  of higher order  of smallness  in compar ison with 
the amplitudes of the perturbations leads to the following sys tem of equations: 

0 { ~OAn~ , ,)gO__yORn O(xOy ~ . IO(r'l--18po 
~ ( ~  -xi~ } ~ -  o~ o-C-  2 ~  n,~-- ~'~(~} - ~ j ~ < ~ + i n H ~ = 0 ,  

oy 
-~ (csRn) -- in-~-~ c~R a § in (~ § t) A~ = 0. 

It follows f rom the form of Eqs.  (2.2) that for n ~ 0 they can be reduced to a single fourth o rder  equation for 
Rn(~, ~-). After determining this function the amplitudes A n and II n can be found f rom the second and third of 
Eqs. (2.2). 

The fourth o rde r  equation obtained is general ly of ra ther  unwieldy form. Since the coefficients in this 
equation depend on both ~ and y, it is pract ical ly  impossible to find the asymptotic  solution of the cor respond-  
ing ini t ial-boundary value problem without further  simplifications.  Investigation of the proper t ies  of this fourth 
o rder  equation enabled us to establish the following fact:  tf  the initial angular velocity w(~) has the form 

(o(~) = o) 0 § o~1/(~ § l) ~, (2.3) 

the equation for R n can be written in the compact  form 

D~D2D3Da((rRn) = 0. (2.4) 

In (2.3) the quantities w 0 and r are  a r b i t r a r y  constants.  The initial distribution (2.3) corresponds  to the 
superposi t ion of the potential vor t ic i ty  and rotat ion o f  the liquid as a solid. In Eq. (2.4) the D i (i= 1, ..., 4) 
denote the following differential ope ra to r s :  

Equation (2.4) is eas i ly  integrated and yields the express ion 

~((~Ra) = ein,(~nj e,nV(~.~)o--n(~,~:)An(~)d~_e~m,o-~je ~nv(:~, (~'~(:,~)An(~)d: § § (,)),. (2.5) 
O 0 

where An(~) , Un(~), and Vn(T ) a re  a r b i t r a r y  functions to be determined f rom the initial and boundary" conditions 
for the per turbed motion. By specifying the initial per turbat ion 
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oR./o~: = v . ( ~ )  ~at ,~ = 0 

of the r ad i a l  component  of ve loci ty  the function An(~) is de te rmined  a t  once:  

d2V n dV n gnl ,  A.  (~) = ~ [(~ + l ) '  ~ + 3 (~ + i )  ~ -- (n' -- t) 

I t  can be es tabl i shed that  the boundary conditions a t  f ree  su r f aces  in pe r tu rbed  motion a r e  reduced to a s y s t e m  
of two o rd ina ry  second o rde r  di f ferent ia l  equations for  Un(T ) and Vn(r 

Thus, i t  has been es tabl i shed that  for solutions of the hydrodynamics  equations given by (1.6) and (2.3) 
the analys is  of  sma l l  pe r tu rba t ions  in the c lass  of plane motions is reduced  to an invest igat ion of the Cauchy 
p rob l em for  o rd ina ry  di f ferent ia l  equations.  

3. Motion toward  the Cente r  of  a Rotat ing Ring. We apply the r e s u l t  obtained to the invest igat ion of 
smal l  pe r tu rba t ions  of the motion of a ro ta t ing  r ing  toward the center  under the act ion of a va r i ab le  ex te rna l  
p r e s s u r e .  The p r o b l e m  of the motion of a ro ta t ing  r i ng  toward the center  is cons idered  in the following 
a r r a n g e m e n t .  

Suppose a t  t imes  t -  0 a r ing  R t 0 -  ~ r -  R20 of an ideal i ncompres s ib l e  liquid ro ta t ing  as a r ig id  body with 
an angular  ve loc i ty  ~0 is in equi l ibr ium under the act ion of a p r e s s u r e  drop and cap i l l a ry  forces  with sur face  
tensions fl~ and fit r e s p e c t i v e l y  on the inner and outer  su r faces  of the r ing.  Different  sur face  tensions on the 

t 
inner and outer  su r faces  occur  when the media  inside and outside the r ing  have different  phys ica l  p rope r t i e s .  
For  t>  0 a p r e s s u r e  p=  P(t) ac ts  on the outer  su r face  of the r ing,  and the inner su r faces  of the r ing  is f ree .  It  
is r equ i r ed  to d e t e r m i n e  the r e su l t i ng  motion of the r ing.  

The solution of the p r o b l e m  posed is given in d imens ion less  va r i ab l e s  by Eqs.  (1.6), where  w(~) = 
~t0 T -  w0 is the constant  initial  angular  ve loc i ty  and ~(r is the solution of the Cauchy prob lem.  

( 2~__ i d2~,.  (~2 1 2 [ l [@~q I ...2/,2 
~~ t ~ d - - ~ - ) ' = ~  - ~ ( ~ F  - -zT~)  L ~ r  4 ~ 1  ] = P ( ~ )  2Z) r  dr ---~wo~. + +~l~7i+~o~o ~, =~-(0)=0,  

(3.1) 
where  fi0 = T2(p0R~0)-tflt and fll = T~(P0R~~ a re  the d imensionless  sur face  tens ions;  %(~) ~ [i - -  @(~)lf/2 and 
az(~) ---- [ ( / +  i) 2 - -  O(~)l ~/: a r e  functions giving the laws of motion of the inner and outer  su r faces  of  the ring, 

r e s p e c t i v e l y .  

A s imple  ana lys i s  of p rob l em  (3.1) shows that  two qual i ta t ively di f ferent  kinds of  motion of the r ing  a r e  
poss ib le  depending on the s ign of the quantity 

•  o T"~Y" 

For  ~ > 0  the r ing  begins to be c o m p r e s s e d ,  and for  ~ <0 to expand. Fur ther ,  if r 0 and for all  t > 0  the func- 
tion P(t) s a t i s f i e s  the inequali t ies 0 < P0 -< P(t) -< Pt < ~o the inner radius  of the r ing R~(t) will va ry  over  finite 
l imi ts  0 < R,-< Rt(t)-< R** <~o and the poss ib le  r e g i m e s  when the c r i t i c a l  values  a r e  R ,  or  R** will be reached 
a f t e r  an infinite t ime.  If the p r e s s u r e  a t  the outer  sur face  of the ro ta t ing  r ing  is constant  (p= P0 > 0) the r ing  
will pulsate  with an ampli tude and per iod  which a r e  constant  in t ime.  

Hencefor th  we r e s t r i c t  ou r se lves  to the case  of the convergence  of a r ing  toward the center  under the 
a s sumpt ion  that  R,/R~0<<I. The la t ter  condition can always be sa t is f ied ,  since for w0 = 0 the cr i t ica l  radius  
R , = 0 .  

We a s s u m e  that  this motion is pe r tu rbed  e i ther  by an initial  dis tor t ion of the shape of the boundaries  of 
the r ing  f r o m  c i r c u l a r  f o r m  or by the a s y m m e t r y  of the impulse .  Suppose that in the per turbed motion the 
inner su r face  of the r ing  is given by the equation 

= ~ ( 0 )  = 

and the outer  su r f ace  of the r i ng  by the equation 

= I + F ( e ) = Z +  ~ F.d "e. 

The ampl i tudes  ~n and #n of the ini t ial  pe r tu rba t ions  of the boundar ies  of the r ing  a r e  a s sumed  sufficiently 
smal l .  We a s s u m e  also that  pe r tu rba t ions  a r e  introduced into the dis tr ibut ion of initial  ve loc i t ies ,  i.e. 

ORn/az = " V n ( ~ )  - a t  T = 0, 
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and into the law of action of the p re s su re  at the outer surface of the r ing 

~-cc 

P = P ( 0 +  ~ ~,~(~)e ~'~~ at ~ = t + ~ t ( 0 ) .  

The radia l  deviations of the free surfaces  in the perturbed motion f rom the free surfaces  in the initial 
motion ve ry  c lear ly  charac te r i ze  the effect of smal l  perturbat ions on the motion of the ring. We denote by 
H0(0, T) and H/C0, T) the values of the deviations for the inner and outer surfaces  of the ring respect ively .  In 
the linear approximation these-quantities a re  given by the equations 

- - c o  

Ho(0, z) a (v (0), ~') -i- R (v (0), 0, "c) %('c) ~~ --~ [v~~ x)] ei~~ ~-oo i,~o (3.2) = ' - -  = ~x-' H o , ~ ( ~ ) e . ,  
r t ~ - - o o  r t ~ - - o o  

H~ (0, -c) = ~ (l 4- ~t (0), ~) + B (l + ~ (0), O, "0 c% (~) ~ -~ �9 - oz (T) ~. [ ( /+  1) ~,~ + ~z (~) R,~ ( l ,  ~) l  e ~ ~  = ~ irtz,, (~) e ~ ~  

The equations which must  be satisfied by the functions I-I0n(Y ) and ttln(y) of Eqs. (3.2) follow from the 
boundary conditions at  the free surfaces  of the r ing in per turbed motion and f rom the obvious relat ions of 
these functions to the functions Un(T ) and Vn(T) given by Eq. (2.5). This sys tem of equations is too cumbersome 
to p resen t  here,  but we note that in general  it consists  of two inhomogeneous second order  ordinary  differential 
equations. The coefficients in this sys tem of equations are  regula r  everywhere  except at the point ~-= 7, de ter -  
mined by the equation a0(T.) = 0. At T = 1", some of the coefficients have singulari t ies of the form o0-k( - In o0) )~, 
where k and 3, are  positive rat ional  numbers.  We note that the equations of smal l  i r rotat ional  perturbations of 
the inert ial  motion of a r ing have s imilar  singulari t ies [1]. The presence of a logari thmic singularity in the 
equations of smal l  perturbat ions complicates finding the asymptot ic  representa t ion  of the solution of the Cauchy 
problem in the neighborhood of the singular point 1 -= ~.,  since there is no general  theory for construct ing 
asymptot ic  expansions when the singular points are  not poles [6]. 

Since a detailed discussion of the asymptotic  analysis  of the solutions of the sys tem of equations under 
discussion in the neighborhood of the time of collapse of the r ing ~-= ~* cannot be given in this paper,  we present  
the resu l t s  of this analysis.  

At all t imes �9 ~ [0, ~,] during the compress ion  of the r ing the amplitudes Hln(~) of the perturbations of 
the outer surface of the r ing remain  bounded. The surface tension exerts  a stabilizing effect on the develop- 
ment of per turbat ions;  i.e., as n~oo the amplitudes H0n(~- ) and H/n(V) are  bounded functions in the interval  
[0, T,]. For  all the types of perturbations enumerated above the behavior of the amplitudes H0n(~ ) of the p e r -  
turbations of the inner surface of a ring as ~--*~-, differs in the following cases :  a) w0r 0; b) w o = O ,  n = l ;  c) 
w0 = 0, n> 1. It should be noted that for 03o ;~ 0 the condition R,/R~0<<I justifies the use of the asymptotic  analysis  
to investigate the solutions of the equations of smal l  per turbat ions in the neighborhood of the time of convergence 
of the r ing  to the cr i t ica l  position charac te r ized  by the equation R t = R, .  

A study of the proper t ies  of the solutions of the equations of small  perturbations for cases a)-c) 
leads respec t ive ly  to the following asymptot ic  representa t ions  of the function H0n(~): 

p - -  (t} 0 Ho, , = Ln (~) exp [4  i 1, n ~- ( -- In %)3/2 (i +o (l))]; (3.3) 

H0~ = Mr(r) + N~(~)(--ln a0)3/:(l ~- o(l)); 

Ho,,. : M~(~)(--ln ao) ~ exp ( i l ' n  -- i In ~o)(i ~-- o(i)). 

In these express ions  Ln(~-), Nt(~-), and Mn(~-) a re  functions which a re  bounded in the interval  [0, "r.], and the 
constant  Q is 

' p ( ~ )  (r) d~ . O -= 2 el)' 

It follows f rom (3.3) that rotat ion plays a double role  in determining the behavior of smal l  perturbat ions during 
the collapse of a ring. On the one hand it decreases  the growth of the amplitudes of the per turbat ions ,  and on 
the other hand it increases  their  oscillation. The stabilizing effect of the rotat ion of a liquid on the develop- 
ment of smal l  per turbat ions  was noted in [7] also, where the stability of s ta t ionary plane paral le l  potential 
vor t ic i ty  with r e spec t  to plane i r rotat ional  perturbat ions was studied. 

In conclusion we note that the effects of rotat ional  perturbations on the stability of  contract ion of a r ing 
of ideal incompress ib le  liquids a re  indirect .  A s imi lar  asymptot ic  analysis for the equations of i r rotat ional  
per turbat ions  of the inert ial  motion of a r ing presented in [1] shows that the asymptot ic  fo rm of the :radial 
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deflect ions of the inner sur face  of the r ing  will coincide with the asympto t ic  behavior  of the functions H0n(T ) in 
cases  b) and e). Consequently in the col lapse  of a r ing  of ideal i ncompress ib l e  liquid per turba t ions  of 
gene ra l  f o r m  develop s i m i l a r l y  to i r ro ta t iona l  per tu rba t ions .  
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A P P L I C A T I O N  O F  E X A C T  S O L U T I O N S  O F  T H E  " S H A L L O W  W A T E R "  

E Q U A T I O N S  T O  T H E  E X P L A N A T I O N  O F  T H E  S I M P L E S T  F L O W S  

B.  L .  R o z h d e s t v e n s k i i  UDC 532.593 

Sta t ionary  solutions of the di f ferent ia l  equations of the theory  of nshallow water  n with axial  s y m m e t r y  
a r e  given by the impl ica t ions  of these equations:  

rhu = Q = Q0/2~p = const; (1) 

rv = D = const; (2) 

U2 -~ ~2 
2 -k gh ----C = const. (3) 

where  h = h(r) is the height of an i ncompres s ib l e  fluid layer  of  densi ty  p, u = u(r),  v = v(r) a r e ,  r e spec t ive ly ,  the 
r ad i a l  and c i r cum fe ren t i a l  components  of the fluid ve loc i ty  vec to r  which is cons idered  constant  along the 
ve r t i c a l  in the whole layer  0 -  < z -  < h(r} in the Wshallow water  w approx imat ion ,  g is the acce l e ra t ion  of gravi ty ,  
and Q0 is the fluid d ischarge  through any sect ion r = const  _> r 0. 

F r o m  (1)-(3) we have the re la t ionsh ip  

Q~ h2 (C - -  gh) (4) 
= t + u~h~ = ep (h.,. C~ u),. u = D/Q,  

which impl ic i t ly  defines the dependence h=h( r )  for known Q, C, D. 

Graphs of the function (p(h,.C, u) a r e  p resen ted  in Fig. 1 for u = 0 and ~ = 1. 

The method of the graphica l  de terminat ion  of the dependence h = h(r) is evident f r o m  (4), and it is a lso 
c l ea r  f r o m  Fig. 1 that  a s t a t iona ry  a x i s y m m e t r i c  solution of the nshallow water  n equations exis ts  only for 

r > r,(Q, C, u)v'~ r , (Q,  C, O) = ( V 2 - ~ ) g Q C - 8 / L  

Hence (4) yields  two solutions co r respond ing  to two dif ferent  fluid flow r e g i m e s .  

The f i r s t  flow r e g i m e  c o r r e s p o n d s  to the dependence h = h(r),  de te rmined  f r o m  (4) for 0 <h <h , (C ,  ~4), 
and the second for  h . (C,  u ) < h  <C/g. Here  h . (C,  ~) denotes the value of h for which ~(h, C, ~) r e aches  the 
max imum.  It  can  be seen  that  for ~r r 0 

h , ( C ,  • < h(C, O) = 2C/3g. 
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